PARVOVIRUS SURVEILLANCE PROTOCOL FOR ONTARIO HOSPITALS

Developed by the Ontario Hospital Association and the Ontario Medical Association
Joint Communicable Diseases Surveillance Protocols Committee

Approved by
The OHA and the OMA Board of Directors
The Ministry of Health and Long-Term Care –
The Minister of Health and Long-Term Care

Published and Distributed by the Ontario Hospital Association
Published July 2011
Last Reviewed and Revised November 2018
Parvovirus Surveillance Protocol for Ontario Hospitals

Published July 2011
Last Reviewed and Revised November 2018

This protocol was developed jointly by the Ontario Hospital Association and the Ontario Medical Association to meet the requirements of the Public Hospitals Act 1990, Revised Statutes of Ontario, Regulation 965. This regulation requires each hospital to have by-laws that establish and provide for the operation of a health surveillance program including a communicable disease surveillance program in respect of all persons carrying on activities in the hospital. The communicable disease program is to include the tests and examinations set out in any applicable communicable disease surveillance protocol. The regulation states that the communicable disease surveillance protocols that hospitals must adopt are those "published jointly by the Ontario Hospital Association (OHA) and the Ontario Medical Association (OMA) and approved by the Minister (of Health and Long-Term Care)."

This Protocol has been reviewed since the previous version; changes have been highlighted in yellow for easy identification. Protocols are reviewed on a regular basis, every two years or as required.

The protocol reflects clinical knowledge, current data and experience, and a desire to ensure maximum cost effectiveness of programs, while protecting health care workers and patients. It is intended as a minimum standard that is practical to apply in most Ontario hospital settings. It does not preclude hospitals from adopting additional strategies that may be indicated by local conditions.
Members of the Joint OHA/OMA Communicable Disease Surveillance Protocols Committee

Representing the Ontario Hospital Association

Dr. Kathryn Suh (Co-chair) Kathleen Poole, MScN, COHN(C) CIC
Medical Director, Infection Prevention and Control Program Infection Control Practitioner,
The Ottawa Hospital, Ottawa Providence Care, Kingston

Sandra Callery, RN MHSc CIC
Director, Infection Prevention and Control

Ontario Hospital Association

Laurie Cabanas Amanda Martens
Acting Director, Policy Policy Advisor

Representing the Ontario Medical Association

Dr. Maureen Cividino (Co-chair) Dr. Irene Armstrong
IPAC Physician, Public Health Ontario Associate Medical Officer of Health
Occupational Health Physician Communicable Disease Control
St. Joseph’s Healthcare, Hamilton Toronto Public Health, Toronto

Ontario Medical Association

Katherine Patterson
Senior Advisor, Health Policy and Promotion
Ontario Medical Association

Representing the Ministry of Health and Long-Term Care

Melissa Helferty, MIPH
Manager, Infectious Disease Policy & Programs
Health Protection and Surveillance Policy and Programs Branch

EX-OFFICIO

Dr. Nikhil Rajaram
Senior Medical Consultant, Occupational Medicine Unit
Occupational Health and Safety Branch
Ministry of Labour

Henrietta Van hulle, BN, MHSM, COHN(c), CRSP, CDMP
Vice President, Client Outreach
Public Services Health and Safety Association
Rationale for Parvovirus Surveillance Protocol

This rationale briefly summarizes current medical knowledge about parvovirus B19 to address the need for information and reassure health care workers (HCWs) that parvovirus B19 is not a significant occupational health and safety risk if Routine Practices are followed. For more detailed information, refer to the bibliography.

The Virus

Parvovirus B19 is a member of the family Parvoviridae. Humans are the only known hosts.

Parvovirus B19 is widespread throughout the world. In temperate climates, infection peaks during the late winter, spring, and early summer. Infection is asymptomatic in 25% of cases. Symptomatic infection most commonly affects children, in whom erythema infectiosum (EI), characterized by fever followed by an intensely erythematous facial rash (“slapped cheek” appearance), is typical. Other clinical manifestations of parvovirus B19 infection are much less common and include papulopurpuric gloves and socks syndrome, polyarthropathy syndrome, and transient aplastic crisis (the latter particularly in those with underlying hematologic disorders). In pregnant women, parvovirus B19 has been associated with fetal hydrops and fetal death, related to suppression of fetal bone marrow and severe anemia.

The incubation period for human parvovirus B19 varies from 4 to 20 days, until the development of a rash or symptoms of aplastic crisis.

Parvovirus B19 infects the majority of persons at some time during their lives.

Acute infection will result in the development of parvovirus B19 IgM antibodies, followed by development of IgG antibodies. Parvovirus B19 IgG antibody indicates prior infection, and persists for life.\(^1\) Individuals with parvovirus IgG antibody are considered to have lifelong immunity. Parvovirus B19 IgG is detectable in 5 to 10% of young children, 50% of 15-year olds, and 80 to 90% of elderly adults. **Among women of child-bearing age in North America, approximately 70% are IgG positive.**\(^2,3\)

Transmission

Parvovirus B19 infection is spread mainly by large respiratory droplets and the virus is shed in nasal and oral secretions during periods of viremia, which occur prior to the development of rash\(^4\). Close contact with an infected individual increases the risk of transmission. Up to 50% of susceptible household contacts of an individual with symptomatic aplastic anemia or EI will become infected.\(^4\) Among susceptible school and daycare personnel, up to 20% of contacts will become infected.\(^1\)

Transmission in healthcare settings has been reported, but the overall risk of infection for HCWs, including pregnant HCWs, is very low:\(^5-8\) the risk of infection may be higher in outbreaks.\(^9-11\) Susceptible HCWs are at a much higher risk of acquiring parvovirus B19 infection from children living in their same household than from an occupational exposure.\(^6,8,12\)
Infrequently, transmission can occur by percutaneous exposure to blood or blood products. During pregnancy, infection can be transmitted transplacentally from mother to fetus.

The period of communicability varies depending on the clinical illness. **Transmission occurs prior to the onset of symptoms in EI; patients are not infectious after appearance of the rash.** Patients with transient aplastic anemia may be viremic and infectious for up to 7 days after the onset of symptoms, and those with severe immunosuppression or chronic infection may be infectious for prolonged durations. \(^1\)\(^,\)\(^13\)

The Risks

Most pregnant HCWs who acquire parvovirus B19 infection acquire it from their own children.\(^12\) The most significant risks of parvovirus B19 infection result from transplacental infection of the fetus. Approximately 1 to 3% of susceptible pregnant women will seroconvert annually,\(^14\) but this may be as high as 13% in epidemic periods.\(^8\) Transplacental transmission occurs in 33 to 51% of these infections,\(^12\)\(^,\)\(^15\)\(^,\)\(^16\) but the vast majority of fetal infections do not lead to adverse fetal outcomes.

Fetal infection, when it develops, usually occurs 6 to 7 weeks after maternal exposure.\(^2\) Adverse fetal outcomes associated with parvovirus B19 infection include intrauterine growth retardation, fetal anemia/hemolysis, fetal hydrops, and fetal death. Most infected fetuses recover spontaneously, with no adverse fetal or pediatric outcomes, but severe adverse outcomes have been reported in 3 to 10% of fetal infections.\(^17\)\(^-\)\(^19\) Spontaneous fetal loss (miscarriage) is associated with parvovirus B19 infection but the attributable risk remains unclear.\(^14\)\(^,\)\(^20\) Fetal loss occurs more commonly with maternal infection during the first half of pregnancy (13% with infection before 20 weeks, vs. 0.5% after 20 weeks gestation).\(^14\) Hydrops fetalis also appears to be more frequent with maternal infection earlier in pregnancy, but occurs in less than 3% of maternal infections overall.\(^14\)\(^,\)\(^18\) Adverse outcomes are rare with infection during the last trimester, in particular the last two months of pregnancy. Limited evidence suggests that adverse fetal outcomes may be more likely when infection in the pregnant woman is clinically apparent (e.g. fever, rash, arthralgias).\(^17\)

A pregnant HCW who seroconverts during pregnancy should be referred to an obstetrician or maternal-fetal medicine specialist for surveillance of the pregnancy.

Prevention: Routine Practices

To prevent transmission of parvovirus B19 in a health care setting, workers must practise hand hygiene especially after all patient and patient environment contact, and apply Routine Practices as indicated. Isolation of patients with EI is not indicated, since patients are no longer infectious once the diagnosis is clinically evident. Other patients suspected of having parvovirus B19 infection (e.g. those with transient aplastic crisis) should be cared for using Droplet Precautions. Kissing or cuddling infants and young children brings the mucous membranes of the mouth, nose and eyes into proximity with the oral and respiratory secretions of the infant / child, which may contain parvovirus B19; this practice by HCWs caring for infants and young children must therefore be prohibited.
Parvovirus B19 infection in a health care setting generally indicates circulation of parvovirus B19 in the community; exposure of HCWs is therefore more likely to occur outside of the health care setting. In addition, parvovirus B19 immunity is relatively high among women of childbearing age, and overall there is a relatively low risk of adverse fetal outcomes due to B19 infection during pregnancy. Therefore, no work exclusion is routinely required for pregnant HCWs.14

This protocol is only one component of an infection prevention and control program; HCWs must consistently adhere to Routine Practices.
Parvovirus Surveillance Protocol for Ontario Hospitals

Developed by
the Ontario Hospital Association and the Ontario Medical Association
Published July 2011
Last Reviewed and Revised November 2018

I. Purpose

The purpose of this protocol is to provide direction to hospitals to prevent the transmission of parvovirus among health care workers (HCWs) and patients.

II. Applicability

This protocol applies to all persons carrying on activities in the hospital, including but not limited to employees, physicians, nurses, contract workers, students, post-graduate medical trainees, researchers and volunteers. The term HCW is used in this protocol to describe these individuals. This protocol does not apply to patients or residents of the facility or to visitors.

When training students or hiring contract workers, the hospital must inform the school/supplying agency that the school/agency is responsible for ensuring that their student/contractors are managed according to this protocol.

This protocol is for the use of the Occupational Health Service (OHS) in hospitals. It is expected that OHS collaborate with Infection Prevention and Control (IPAC) and other departments, as applicable.

III. Pre-placement

Screening for susceptibility or immunity to parvovirus B19 in persons carrying on activities in the hospital is not required and is not recommended. If screening has been done, results do not affect HCW placement.

IV. Continuing Surveillance

No routine continuing surveillance of any persons carrying on activities in the hospital is required for parvovirus B19. Contact tracing may be indicated for pregnant HCWs after exposure to infectious patients with acute parvovirus B19 infection.

Pregnant Health Care Workers

There is no evidence that seroconversion is more frequent in HCWs than in the general population. Thus, pregnant HCWs need not be excluded from working with infants, young children, or immunocompromised patients.
V. Exposure

Due to the fact that the period of communicability ends at the time of symptom presentation for patients with EI, there is no practical way to anticipate HCW exposure to parvovirus B19. All HCWs may be potentially exposed to parvovirus B19. The best prevention strategy is consistent application of Routine Practices, including careful hand hygiene before and after all patient contact. Contact with the secretions of all patients should be prevented by use of appropriate barriers as indicated by Routine Practices. HCWs should avoid kissing or cuddling hospitalized babies and young children.

Droplet Precautions are recommended for patients in aplastic crisis.

HCWs should only be considered exposed and regarded as close contacts if the source is a confirmed case of parvovirus B19 infection (compatible clinical illness in conjunction with positive IgM antibody) AND if the HCW’s mucous membranes were exposed to infectious respiratory droplets. As the disease is generally benign, only those who are pregnant warrant follow-up.

Pregnant HCWs Exposed to Parvovirus B19 in the Workplace

A pregnant HCW who is occupationally exposed to patients with parvovirus B19 infection, or who develops symptoms consistent with parvovirus B19 infection after an occupational exposure, should be assessed and serology ordered to determine if the HCW is immune or has acute infection (i.e. determine IgG and IgM status).

If parvovirus B19 IgG is present and IgM is negative:
- the HCW is immune and can be reassured that she will not develop infection and that the virus will not adversely affect her pregnancy.

If parvovirus B19 IgG is negative and IgM is negative:
- the HCW is either incubating disease or, if the incubation period has passed, the HCW remains susceptible.
- if incubating disease, the HCW should be referred to her personal physician, or to an obstetrician or maternal-fetal medicine physician, for assessment, counseling, and follow-up.
- if the incubation period has passed, the HCW remains susceptible and should be counseled regarding the need for Routine Practices.
- work exclusion is not routinely recommended for susceptible pregnant HCWs.\(^14\)

If parvovirus B19 IgM is positive (suggesting recent infection):
- the HCW should be referred to her personal physician, or to an obstetrician or maternal-fetal medicine physician, for assessment, counseling, and follow up.
Guidelines for management and follow-up are available from the Society of Obstetricians and Gynecologists of Canada.14

VI. **Acute Disease**

Any HCW who develops illness thought to result from parvovirus B19 infection need not be restricted from work. Once symptoms have become clinically apparent, transmission of infection is unlikely to occur.

VII. **Reporting**

Parvovirus infection is not reportable to the local Medical Officer of Health

In accordance with the Occupational Health and Safety Act and its regulations, an employer must provide written notice within 4 days of being advised that a worker has an occupational illness, including an occupationally-acquired infection, and/or a Workplace Safety and Insurance Board (WSIB) claim has been filed by or on behalf of the worker with respect to an occupational illness, including an occupational infection, to the:

- Ministry of Labour,
- Joint Health and Safety Committee (or health and safety representative), and
- trade union, if any.

Occupationally-acquired illnesses are reportable to the WSIB.

VIII. **Outbreaks**

Not applicable.

IX. **Glossary**

Hydrops fetalis

A serious fetal condition caused by fetal anemia and defined as abnormal accumulation of fluid in two or more fetal compartments, including ascites, pleural effusion, pericardial effusion, and skin edema.

Aplastic crisis

Suppression, usually temporary, of erythropoiesis (the process in which red blood cells are formed), usually due to viral infection (e.g. parvovirus B19); may be particularly severe in people with hemolytic anemias (e.g. sickle cell disease, thalassemia, hereditary spherocytosis).
References

